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INTRODUCTION

What it is now known as item response modeling [for an overview see van der
Linden and Hambleton (1997)] originated as an effort to overcome the limita-
tions of the factor model when applied to test items. Test items are most often
categorical in nature, whereas the factor model was designed for continuous data.
Unfortunately, over the years item response modeling and factor modeling have
developed rather independently from one another. One of the recurring topics in
R. P. McDonald’s career has been establishing bridges between these two fields
(McDonald, 1967, 1980, 1981, 1982a, 1982b, 1985a, 1985b, 1986, 1999, 2001;
McDonald & Mok, 1995). Two approaches can be used to relate the nonlinear
models used in item response theory (IRT) to the linear model used in factor anal-
ysis. One approach is to use harmonic analysis (e.g., McDonald, 1967, 1982a).
The second approach is to use link functions (e.g., McDonald, 1999; Moustaki &
Knott, 2000).

This chapter focuses on one particular item response model for binary data,
the linear IRT model. In this model, the conditional probability of endorsing an
item given the latent traits is simply a linear function. McDonald (1999, chap. 12
and 13; see also McDonald, 1969, 1982a) discussed at length the application of
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the usual IRT theoretical machinery (e.g., information functions) to this model.
McDonald (1999) also pointed out that when this model is estimated using bivariate
information, it is equivalent to the factor model. In this chapter we explore further
the linear IRT model for binary data and its relation to the factor model. We show
that with binary data these two models are not always equivalent. In fact, they
are only equivalent when the linear IRT model is estimated using only univariate
and bivariate information. Thus, in relating the factor model to the linear item
response model it is necessary to take into account estimation issues, in particular
the use of limited- versus full-information methods. The use of limited- versus full-
information estimation methods in IRT is discussed by Bolt (chap. 2, this volume;
see also Maydeu-Olivares, 1996), and Krane and Slaney (chap. 5, this volume)
provide an useful introduction to the factor model; a more detailed presentation of
IRT modeling is given by Ackerman (chap. 1, this volume).

This chapter is organized as follows. In the next section we discuss the linear
item response model within a general presentation of item response models using
link functions. The use of harmonic analysis as a unifying framework for both linear
and nonlinear item response models is discussed at the end of the section. The third
section discusses the factor model and its application to binary data. In that section
we relate the factor model to the linear item response model. The fourth section is
devoted to estimation and testing. First, we discuss estimation and testing in factor
analysis. Next, we discuss estimation and testing in IRT. We close that section by
describing some of the challenges currently faced in estimating and testing IRT
models and introduce new theoretical results that address these challenges. Several
numerical examples are provided in the final section to illustrate the discussion.

THE LINEAR ITEM RESPONSE MODEL
FOR BINARY DATA

Item Response Modeling for Binary Data:
Nonlinear Models

Consider n binary variables y = (y1, . . . , yn)′, each one with two possible out-
comes. Without loss of generality, we may assign the values {0, 1} to these pos-
sible outcomes. Therefore, the distribution of each yi is Bernoulli, and the joint
distribution of y is multivariate Bernoulli (MVB).

All item response models for binary data take on the form (e.g., Bartholomew
and Knott, 1999)

Pr

(
n⋂

i=1

yi

)
=

∞∫
−∞

· · ·
∞∫

−∞

γp (η)

{
n∏

i=1

[Pr (yi = 1|η)]yi [1 − Pr (yi = 1|η)]1−yi

}
dη, (1)

where Pr(
⋂n

i=1 yi ) denotes the probability of observing one of the possible 2n bi-
nary patterns, γp(η) denotes the probability density function of a p-dimensional
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vector of continuous unobserved latent traits η, and Pr (yi = 1|η) is usually de-
noted as the item response function (IRF).

Let zi = αi + β′
iη, where αi is an intercept and βi is a p × 1 vector of slopes.

Two widely used IRFs are

Pr(yi = 1|η) = �1(zi ) =
αi +β′

i η∫
−∞

e− t2
2√

2π
dt, (2)

Pr(yi = 1|η) = �(zi ) = 1

1 + e−(αi +β′
iη)

, (3)

where �1(zi ) and �(zi ) denote, respectively, univariate standard normal and stan-
dard logistic distribution functions evaluated at zi . These functions link zi to the
probability of endorsing an item, given a fixed value of the latent traits.

Now, to completely specify Equation 1 we also need to specify the density of
the latent traits, γp (η). This is generally assumed to be multivariate normal with
mean zero and some correlation matrix Φ, that is,

γp (η) = φp (η : 0,Φ) . (4)

The model given by Equation 1 with Equations 2 and 4 is referred to as the
multidimensional normal ogive model, whereas the model given by Equation 1 with
Equations 3 and 4 is referred to as the multidimensional two-parameter logistic
model. Note, however, that the IRFs given by Equations 2 and 3 can be coupled in
fact with any density function γp (η), for instance, with a nonparametric function.
Similarly, the IRF can also be a nonparametric function.

Generally, we require two properties from an IRF:

Property 1. An IRF should be bounded between 0 and 1 because it is a proba-
bility.

Property 2. An IRF should be smooth.

In addition, when modeling cognitive test items, we generally also require the
following:

Property 3. An IRF should be monotonically increasing.

In the case of attitudinal or personality items, it has been argued (e.g., van Schuur
& Kiers, 1994) that Property 3 need not be a reasonable assumption. The IRFs
given by Equations 2 and 3 are monotonically increasing. A non-monotonically
increasing multidimensional IRF is

Pr(yi = 1|η) =
√

2π φ1(zi ) = e−(αi +β′
iη)2/2, (5)
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where φ1 (zi ) denotes a univariate standard normal density function evaluated at zi .
Maydeu-Olivares, Hernández, and McDonald (2004) recently introduced a model
with the IRF given by Equation 5 and normally distributed latent traits, which
they denote the normal PDF model. The normal ogive, the two-parameter logistic,
and the normal PDF models are obtained by simply using the nonlinear functions
�1(zi ), �(zi ), and

√
2πφ1(zi ) to link zi to Pr(yi = 1|η).

The Linear Item Response Model

The linear item response model for binary data discussed in McDonald (1999)
simply amounts to using an identity link function I (zi ) instead of a nonlinear link
function to specify the IRF. Thus, the IRF of this model is

Pr(yi = 1|η) = I (zi ) = �i + β′
iη. (6)

The IRF of this model violates Property 1 because it is not bounded between 0
and 1. Thus, for large enough values of the latent traits it yields probabilities larger
than 1, and for small enough values it yields probabilities less than 0 (McDonald,
1999). This is a very unappealing property of the model.

On the other hand, the linear model enjoys a very attractive property that has
not been noticed, namely, we need not specify a latent trait density. This can be
readily seen if we characterize the multivariate Bernoulli distribution using its joint
raw moments. In the Appendix we discuss two alternative representations of this
distribution: (a) using the set of 2n binary pattern probabilities π and (b) using the
set of 2n − 1 joint raw moments of this distribution π̇. We also show that there is
a one-to-one relationship between these two representations.

Consider, for example, a unidimensional linear latent trait model for n = 3
items. Let κ i denote the i th raw moment of the latent trait,

κi = E[ηi ], (7)

so that, for instance, the mean of the latent trait is denoted byκ1. Notice that there are
n latent trait moments in a unidimensional linear IRT model for n variables. Using
Equations 6 and 7, with Equation A7 of the Appendix, we obtain the univariate
moments of the MVB distribution under the linear IRT model as

π̇i = Eη[αi + βiη] = αi + βi E[η] = αi + βiκ1. (8)

Similarly, using Equation A8, we obtain the bivariate raw moments of the MVB
distribution under this model as

π̇i j = Eη[(αi + βiη)(α j + β jη)] = αiα j + (αiβ j + α jβi )E[η] + βiβ j E[η2]

= αiα j + (αiβ j + α jβi )κ1 + βiβ jκ2. (9)
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Finally, using Equation A9, we obtain the trivariate moments under this model as

π̇i jk = αiα jαk + (αiα jβk + αiαkβ j + α jαkβi )κ1

+ (αiβ jβk + α jβiβk + αkβiβ j )κ2 + βiβ jβkκ3. (10)

This example illustrates how the moments of y under the linear IRT model only
depend on the item parameters and on the moments of the latent traits, regardless
of the density of the latent traits. This is also true of the cell probabilities because
of Equation A5 (see the Appendix).

Not all parameters of the linear IRT model are identified. Fixing any two mo-
ments to 0 and 1, respectively, suffices to identify a unidimensional model. These
two fixed moments set the location and scale of the latent trait. This can be checked
by verifying that ∆ = ∂π (θ)/∂θ′ is of full rank (Bekker, Merckens & Wansbeek,
1994), where θ denotes the model parameters (i.e., the item parameters and the
moments of the latent traits) stacked in a column vector. Thus, if, for instance,
(a) the mean and the variance of the latent trait are fixed to 0 and 1, respectively,
or (b) the nth- and (nth − 1) order moments of the latent trait are fixed to 0 and 1,
respectively, then all the item parameters and the remaining moments of the latent
trait are identified.

Fewer parameters can be identified when the model is estimated using limited-
information methods. For instance, suppose that the model is to be estimated using
only univariate and bivariate information. Then third- and higher order moments
of the latent traits cannot be identified because they do not appear in Equations
8 and 9. The means and variances of the latent traits cannot be identified either.
In this case, the means can be set to 0 and the variances to 1 to identify the
model.

In closing our treatment of the linear IRT model, we consider making statements
about an individual’s location on the latent traits given the individual’s binary
responses. All the relevant information needed for this is contained in the posterior
distribution of the latent traits given the observed binary responses (Bartholomew
& Knott, 1999),

ϕp(η|y) = γp(η)
{∏n

i=1 [Pr(yi = 1|η)]yi [1 − Pr(yi = 1|η)]1−yi
}

Pr
(⋂n

i=1 yi
) . (11)

Thus, after the item parameters and latent trait moments have been estimated, an
individual’s location can be obtained, for instance, by computing the mean or the
mode of this posterior distribution. The former are known as expected a posteriori
(EAP) scores and the latter as maximum a posteriori (MAP) scores. Obtaining
MAP scores in general requires an iterative procedure, whereas obtaining EAP
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scores involves computing

EAP (y) =
∞∫

−∞
· · ·

∞∫
−∞

ηϕp (η|y) dη. (12)

It is of interest that in the linear IRT model, although it is not necessary to assume
any prior distribution for γp (η) to estimate the model parameters, it is necessary
to assume some prior distribution to obtain these scores.

Wide-Sense Linear Item Response Models

So far, we have considered linear and nonlinear link functions for obtaining the
IRF in item response models. In passing, we point out that a third alternative
for obtaining an IRF is to use a wide-sense linear function in the latent traits
(McDonald, 1967, 1982a). This is a function that is linear in the item parameters,
but nonlinear in the latent traits,

Pr (yi = 1|η) = αi +
p∑

j=1

βi jϕ j (η), (13)

for some nonlinear functions ϕ j (η). A typical example of a wide-sense model is
the unidimensional cubic model

Pr (yi = 1|η) = αi + βi1η + βi2η
2 + βi3η

3. (14)

McDonald (1982a) pointed out that wide sense linear models may offer a unified
framework for IRFs that encompasses both the linear and nonlinear models as
special cases.

It remains to be investigated whether any item response model can be written
as a wide-sense model. However, it is easy to show using Hermite polynomials
that any item response model with differentiable item response functions and
normally distributed latent traits can be expressed as a wide-sense linear model.
A Hermite polynomial of degree k, Hk (x), satisfies by definition Hk (x) φ (x) =
(−1)k ∂kφ (x)/∂xk . The first four terms of this polynomial are

Hk (x) =




1 if k = 0,

x if k = 1,

x2 − 1 if k = 2,

x3 − 3x if k = 3.

(15)
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For instance, McDonald (1967; see also McDonald, 1997) showed that the unidi-
mensional version of the normal ogive model given by Equation 2 can be written as

�1 (αi + βiη) = �1


 αi√

1 + β2
i


 + φ1


 −αi√

1 + β2
i




×
∞∑

k=1

1

k!


 βi√

1 + β2
i




k

Hk−1


 −αi√

1 + β2
i


 Hk (η). (16)

Also, it can be shown that a unidimensional normal PDF model as in Equation 5
can be written as

√
2πφ1 (αi + βiη) =

√
2π

(
1 + β2

i

)−1/2
φ1


 −αi√

1 + β2
i




×
∞∑

k=0

1

k!


 βi√

1 + β2
i




k

Hk


 −αi√

1 + β2
i


 Hk (η). (17)

A expression for the two-parameter logistic model with a normally distributed
latent trait can similarly be obtained, but this does not seem to have been
attempted. In any case, we see in Equations 16 and 17 that strictly nonlinear
models can be expressed as wide-sense linear models with an infinite number of
terms. In practice, they can be well approximated with a small number of terms.
For instance, both the normal ogive and normal PDF model can be reasonably
approximated by truncating the series in Equations 16 and 17 at k = 3.

THE FACTOR MODEL

Description of the Model

Let y be a n × 1 vector of observed variables to be modeled, η be a p × 1 vector
of unobserved latent traits (factors), where n > p, and ε be an n × 1 vector of
random errors. The factor model assumes that

y = α + Bη + ε, (18)

where α is an n × 1 vector of intercepts and B is an n × p matrix of slopes (factor
loadings). The model further assumes that the mean of the latent traits is zero, that
the mean of the random errors is zero, and that the latent traits and random errors
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are uncorrelated. That is,

E [η] = 0, E [ε] = 0, cov [η] = Φ, cov [ε] = Ψ, cov[η, ε′] = 0. (19)

Furthermore, the random errors are generally assumed to be mutually uncorrelated,
so that Ψ is a diagonal matrix.

We note two interesting features about this model: First, no assumptions are
made on the distribution of the latent traits η nor the errors ε. As a result, no
assumptions are made on the distribution of the observed variables y.

The factor model as defined by Equations 18 and 19 has an interesting second
feature: It is a partially specified model. By this, we mean the following: Under
assumptions 18 and 19, it follows that

µ = E[y] = α (20)

Σ = cov[yy′] = BΦB′ + Ψ, (21)

where µ and Σ are the population univariate and bivariate central moments of
y, respectively, which depend solely on the model parameters. Moreover, it is a
partially specified model in the sense that using only assumptions 18 and 19, we
have that the trivariate moments of the observed variables do not depend solely on
the model parameters. They also depend, for instance, on the third-order moments
of the latent traits. However, these are left unspecified in the factor model. In
contrast, item response models are completely specified models in the sense that
all the moments of y are completely specified by the model parameters.

It is not surprising that the factor model is a partially specified model. The objec-
tive of factor analysis applications is to model the bivariate associations present in
the data: either the central moments (sample covariances) or the standardized cen-
tral moments (sample correlations). Generally, the mean structure is of no interest,
and only the parameters involved in the covariance structure are estimated.

In closing this section, it is interesting that historically it has been frequently as-
sumed that the latent traits η and the errors ε are jointly multinormally distributed.
Under this additional assumption (which we do not make here), the distribution
of y is multivariate normal and the factor model becomes a completely specified
model because the multivariate distribution is completely specified by its first two
moments.

Relationship Between the Factor Model
and the Linear Item Response Model

The linear item response model presented here is a model for binary data. In
contrast, the factor model does not make any assumptions about the nature of the
observed variables. Thus, in principle, it can be applied to binary data. However,
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when the observed variables are binary, var (yi ) = µi (1 − µi ). Coupling this with
Equation 20, we see that when the factor model is applied to binary data it must
satisfy

var (yi ) = αi − α2
i . (22)

where αi denotes the i th element of α. However, from Equation 21 it must also
satisfy

var (yi ) = β′
iΦβi + ψ2

i . (23)

where ψ2
i denotes the i th element on the diagonal of Ψ, and β′

i denotes the i th
row of B. As a result, when the factor model is applied to binary data the elements
of α and Ψ are jointly underidentified. In other words, when the factor model is
applied to binary data one can estimate either {α, B and Φ} or {Ψ, B and Φ}.
These are two alternative parametrizations of the model. We refer to the former as
the α parametrization and the latter as the Ψ parametrization. Using Equation 22
and 23, we obtain the relationship between these parametrizations as

αi =
1 +

√
1 − 4β′

iΦβi − 4ψ2
i

2
, (24)

ψ2
i = αi − α2

i − β′
iΦβi . (25)

Note that if the factor model is estimated using only the covariance structure
(ignoring the mean structure), this identification problem goes unnoticed because
α is not involved. Also notice that in estimating a factor model from binary data all
the identified model parameters can be estimated using only the covariance matrix.
In this case, it seems natural to use the Ψ parametrization, but one can also use
the α parametrization. The covariance structure implied by the α parametrization
is, from Equation 25,

Σ = BΦB′ + diag(α − α2) − Diag(BΦB′), (26)

where we use diag (x) to indicate a diagonal matrix with diagonal elements equal
to x and Diag (X) to indicate a matrix where all the off diagonal elements of X
have been set to zero.

Equations 20 and 26 are also the mean and covariance structures implied by the
linear item response model. Thus, the factor model applied to binary data and the
linear item response model estimated from univariate and bivariate information are
equivalent models. In general, they are not equivalent models because the linear
item response model can be estimated using full information, and in this case some
of the moments of the latent traits can be estimated.
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Because the linear item response model and the factor model are equivalent
when estimated from bivariate information, a question immediately arises. Can
we compare the fit of a factor model (estimated by bivariate methods) and of a
nonlinear item response model to a given binary data set? In order to answer this
question it is necessary to discuss not only statistical theory for goodness of fit
testing but also for estimation in both item response modeling and in factor analysis.

ESTIMATION AND TESTING

Factor Model

Let θ be the q-dimensional vector of parameters to be estimated. Also, let σ be
the t = n (n + 1)/2 -dimensional vector obtained by stacking the elements on the
diagonal or below the diagonal of Σ. Finally, let s be the sample counterparts of
σ (i.e., sample variances and covariances). A popular approach to estimate the
parameters of the factor model is to minimize the weighted least squares (WLS)
function,

F = (s − σ (θ))′ Ŵ (s − σ (θ)), (27)

where Ŵ is a matrix converging in probability to W, a positive-definite matrix.
Now, let ∆ = ∂σ (θ)/∂θ′ and H = (∆′W∆)−1∆′W. Also, let

d→ denote con-
vergence in distribution.

Because
√

N (s − σ)
d→ N (0,Γ), then, if ∆ is of full rank q and some other

mild regularity conditions are satisfied (Browne, 1984), the parameter estimates θ̂
obtained by minimizing Equation 27 are consistent, and

√
N (θ̂ − θ)

d→ N (0, HΓH′), (28)√
N (s − σ(θ̂))

d→ N (0,Ω), Ω = (I − ∆H)Γ(I − ∆H)′ , (29)

where (s − σ(θ̂)) denotes the residual variances and covariances.
Some obvious choices of Ŵ in Equation 27 are Ŵ = Γ̂

−1
(minimum variance

WLS, or MVWLS), Ŵ = (Diag(Γ̂))−1 (diagonally WLS, or DWLS) and Ŵ = I
(unweighted least squares, or ULS).

Following Browne (1984), when the factor model is estimated by minimizing
Equation 27, we can obtain a goodness-of-fit test of the restrictions imposed by
the model on the means and covariances of y by using

TB = N (s − σ(θ̂))′Û(s − σ(θ̂)), U = Γ−1 − Γ−1∆(∆′Γ−1∆)−1∆′Γ−1.

(30)

TB is asymptotically distributed as a chi-square distribution with t − q degrees
of freedom regardless of the weight matrix used in Equation 27. To obtain stan-
dard errors for the parameter estimates and residuals and to obtain an overall
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goodness-of-fit test using Equations 28,30, we evaluate ∆ at the parameter es-
timates and consistently estimate Γ using sample third- and fourth-order central
moments.

Previously, we referred to the estimator obtained by using Ŵ = Γ̂
−1

in Equation
27 as the minimum variance WLS estimator. This is because with this choice of
weight matrix, the resulting estimator has minimum variance (asymptotically)
within the class of estimators based on the sample covariances. In the case of the
MVWLS estimator, Equation 28–30 simplify to

√
N (θ̂ − θ)

d→ N (0, (∆′Γ−1∆)−1) (31)√
N (s − σ(θ̂))

d→ N (0,Ω), Ω = Γ − ∆(∆′Γ−1∆)−1∆′. (32)

TB = N F̂
d→ χ2

t−q . (33)

Here, we have focused on the weighted least squares discrepancy function 27 (also
denoted as the generalized least squares function). Another discrepancy function
that is often used to estimate the factor model is the discrepancy function

F = ln |Σ (θ)| − ln |S| + tr((Σ(θ))−1S) − n, (34)

where S is the sample covariance matrix of y. If y is normally distributed, minimiz-
ing Equation 34 yields maximum likelihood estimates. When y is not normally
distributed, standard errors for the model parameters estimated by minimizing
Equation 34 and goodness-of-fit tests can be obtained using Equations 28 and 30,
respectively (e.g., Satorra & Bentler, 1994). Another method widely used to assess
the goodness of fit when Equation 34 is minimized without a normality assump-
tion and when Equation 27 is minimized using Ŵ �= Γ̂

−1
is to adjust NF̂ by its

mean (or by its mean and variance) so that the resulting test statistic asymptotically
matches the mean (or the mean and the variance) of a chi-square distribution with
t − q degrees of freedom (Satorra & Bentler, 1994).

Item Response Models

Let π(θ) denote the 2n vector of the binary pattern probabilities of Equation 1 ex-
pressed as a function of the q mathematically independent parameters θ of an item
response model, and let p be the sample counterpart of π (i.e., cell proportions).
Item response models for binary data are commonly estimated by maximizing the
log-likelihood function

ln L = N p′ ln (π (θ)) . (35)

Thus, the resulting parameter estimates θ̂ are maximum likelihood estimates. In-
stead of maximizing Equation 35, it is convenient to minimize

FML = p′ ln

(
p

π (θ)

)
, (36)



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

LE104-03 LE104-Maydeu-v2.cls February 20, 2005 13:49

84 MAYDEU-OLIVARES

Now, let D = diag (π). Since

√
N (p − π)

d→ N (0,Γ) , Γ = D − ππ′, (37)

then, if ∆ = ∂π (θ)/∂θ′ is of full rank q and some other regularity conditions are
satisfied (Agresti, 1990; Rao, 1973), the maximum likelihood parameter estimates
are consistent, they have minimum variance (asymptotically), and

√
N (θ̂ − θ)

d→ N (0, (∆′ D−1∆)−1). (38)

Also, we have the following result for the residual cell proportions (p − π(θ̂))

√
N (p − π(θ̂))

d→ N (0,Ω) , Ω = Γ − ∆(∆′D−1∆)−1∆′. (39)

To obtain standard errors for the parameter estimates and residuals, all matrices
are evaluated at the parameter estimates.

The two most widely used statistics to assess the goodness of fit of the model
are the likelihood ratio test statistic G2 and Pearson’s X2 statistic,

G2 = 2N p′ ln

(
p

π(θ̂)

)
= 2NF̂ ML , (40)

X2 = N (p − π(θ̂))′(diag(π(θ̂)))−1(p − π(θ̂)). (41)

When the model holds, both statistics are asymptotically equivalent and they are
asymptotically chi-square distributed with 2n − q − 1 degrees of freedom.

We now consider an alternative approach to estimating the IRT parameters that
is related to the weighted least squares function in Equation 27 used to estimate
the factor model and also to Pearson’s X2 statistic. Suppose θ̂ is obtained by
minimizing the generalized minimum chi-square function

F = (p − π (θ))′ Ŵ (p − π (θ)) , (42)

where Ŵ is a matrix converging in probability to W, a positive-definite matrix.
Then, if ∆ = ∂π (θ)/∂θ′ is of full rank q and some other regularity conditions
are satisfied (Ferguson, 1996), θ̂ is consistent, and

√
N (θ̂ − θ)

d→ N (0, HΓH′), H = (∆′W∆)−1∆′W (43)
√

N (p − π(θ̂))
d→ N (0,Ω) , Ω = (I − ∆H) Γ (I − ∆H)′ , (44)

where Γ is given by Equation (37). To obtain the standard error for the parameter
estimates and residuals, ∆ and Γ are evaluated at the parameter estimates. Some
obvious choices of Ŵ in Equation 42 are Ŵ = D̂−1 and Ŵ = I. When Ŵ = D̂−1,
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we obtain asymptotically minimum variance estimators and Equations 43 and 44
reduce to Equations 38 and 39, respectively. Note that in this case we can use D̂−1 =
(diag(π(θ̂)))−1 or D̂−1 = (diag(p))−1. The former is the usual minimum chi-square
estimator, whereas the latter is the modified minimum chi-square estimator. The
two are asymptotically equivalent. When Equation 42 is minimized with Ŵ =
(diag(π(θ̂)))−1, NF̂ = X2.

New Developments in IRT Estimation
and Testing

Because statistical inference for item response models generally involves full-
information procedures, whereas statistical inference for the factor model involves
limited-information procedures, the former are generally computationally more
involved than the latter. Furthermore, statistical inference for item response models
faces several challenges (Bartholomew & Knott, 1999; Bartholomew & Leung,
2001; Bartholomew & Tzamourani, 1999; Reiser, 1996; Reiser & VandenBerg,
1994):

1. In sparse binary tables, the empirical distribution of the overall tests G2 and
X2 does not match its asymptotic distribution. Therefore, statistical inferences
based on these statistics are invalid in sparse tables. Although it is possible to
generate the empirical sampling distribution of these statistics using resampling
methods (for instance, using parametric bootstrap; Bartholomew and Tzamourani,
1999), the amount of computation involved is substantial, particularly when we
are interested in comparing the fit of competing IRT models to data sets with a
large number of variables.

2. When G2 and X2 indicate a poorly fitting model, one is interested in identi-
fying the source of the misfit. Because the number of cell residuals to be inspected
is generally very large, it is difficult if not impossible to draw useful information
about the source of the misfit using cell residuals (Bartholomew & Knott, 1999). In
recent years it has been advocated (e.g., Bartholomew & Tzamourani, 1999; Mc-
Donald & Mok, 1995; Reiser, 1996) to inspect low-order marginal residuals (e.g.,
univariate, bivariate, and trivariate residuals) to detect the source of any possible
misfit. Although it is not difficult to derive the asymptotic distribution of low-order
marginal residuals, no overall limited information tests with known asymptotic dis-
tribution seemed to be available in the item response modeling literature (but see
Bartholomew & Leung, 2001; Reiser, 1996).

3. Several limited-information estimation procedures have been proposed to
estimate item response models (e.g., Christoffersson, 1975; McDonald, 1982b;
Muthén, 1978; see also Maydeu-Olivares, 2001). These procedures yield limited-
information goodness-of-fit tests of known asymptotic distribution that per-
form well in sparse tables (Maydeu-Olivares, 2001). However, when limited
information estimation procedures are used, G2 and X2 do not follow their
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usual asymptotic distribution (Bishop, Feinberg, & Holland, 1975), and no full-
information goodness-of-fit test with known asymptotic distribution had been pro-
posed for these estimators.

Maydeu-Olivares and Joe (in press) recently addressed these challenges by in-
troducing a unified framework for limited- and full-information estimation and
testing in binary contingency tables using the joint raw moments of the MVB
distribution. These moments can be expressed as a linear function of the cell prob-
abilities π̇ = Tπ, where T is a matrix that consists of ones and zeros. Consider
now partitioning the vector of joint raw moments of the MVB distribution as
π̇′ = (π̇1, π̇2, . . . , π̇n)′, where π̇i denotes the ( n

i )-dimensional vector of i th-order
moments (see the Appendix). T can also be partitioned according to the parti-
tioning of π̇as T = (T′

1, T′
2, . . . , T′

n)′, where Ti is a ( n
i ) × 2n matrix of ones and

zeros (see the example shown in Equation A3). Consider now the s = ∑r
i=1 ( n

i ),
dimensional vector of moments up to order r ≤ n π̃′

r = (π̇1, π̇2, . . . , π̇r )′, with
sample counterpart p̃r . Letting T̃r = (T′

1, T′
2, . . . , T′

r )′, we can write

π̃r = T̃rπ. (45)

Then, from Equations 45 and 37, it follows immediately that the asymptotic
distribution of the joint sample raw moments up to order r of the MVB distri-
bution is

√
N (p̃r − π̃r )

d→ N (0, Ξ̃r ), Ξ̃r = T̃rΓT̃r . (46)

Using this result, Maydeu-Olivares and Joe (in press) proposed a unifying
framework for limited- and full-information testing in binary contingency tables
using

Mr = N (p̃r − π̃r (θ̂))′Ûr (p̃r − π̃r (θ̂)), (47)

U r = Ξ̃−1
r − Ξ̃−1

r ∆̃r (∆̃′
r Ξ̃

−1
r ∆̃r )−1∆̃′

r Ξ̃
−1
r , (48)

where ∆̃r = ∂π̃r (θ)/∂θ′, and all matrices are evaluated at the estimated parameter
values. Maydeu-Olivares and Joe showed that if θ is estimated using any (limited
or full information) consistent and asymptotically normal estimator and if ∆̃r is
of full rank q (i.e., if the model is locally identified from the moments up to order
r ), then Mr is asymptotically distributed as a chi-square with s − q degrees of
freedom.

Mr the moments of the binaries data up to order r to assess the goodness of
fit of the model. Its limiting case, Mn is a full-information statistic because of the
one-to-one relation between the set of all marginal moments and the cell proba-
bilities in Equations A4 and A5. Furthermore, Maydeu-Olivares and Joe showed
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that Mn can be alternatively be written as

Mn = N (p − π(θ̂))′Û(p − π(θ̂)), U = D−1 − D−1∆(∆′D−1∆)−1∆′D−1,

(49)

where all the matrices are to be evaluated at the estimated parameter values. This
statistic is asymptotically distributed as a chi-square with 2n − q − 1 degrees of
freedom for any consistent and asymptotically normal estimator (including limited-
information estimators). Also, Mn = X2 when the model is estimated by full-
information maximum likelihood.

It is interesting to point out that when applied to binary data, the statistic TB

proposed by Browne (1984) in the context of covariance structure modeling is
closely related to the member of the class of Equation 47 where only univariate
and bivariate moments are used (i.e., M2). In fact, M2 is asymptotically equal
to the TB statistic. Both statistics are asymptotically chi-square distributed with
t − q degrees of freedom for any consistent and asymptotically normal estimator.
However, they are not algebraically equal. M2 is a quadratic form in residual
raw univariate and bivariate moments, whereas TB is a quadratic form in residual
covariances (bivariate central moments). Furthermore, the asymptotic covariance
matrix of the sample moments used in each statistic is estimated differently. In
M2 this matrix is evaluated at the estimated parameter values, whereas in TB

it is estimated using sample moments. Nevertheless, it is remarkable that since
Browne’s TB statistic was proposed in 1984, no one seems to have noticed that if
an IRT model is identified from the univariate and bivariate margins, then the TB

statistic can be used to test the goodness of fit of the model.
In closing this discussion on goodness-of-fit statistics, we present an alternative

family of test statistics, M ′
r , introduced by Maydeu-Olivares and Joe (in press),

which can also be used to assess the goodness of fit of IRT models and has a greater
resemblance to Browne’s statistic. This family is

M ′
r = N (p̃r − π̃r (θ̂))′Û′

r (p̃r − π̃r (θ̂)), (50)

where Û′
r denotes Equation 48 evaluated as in Browne’s statistic, that is, the deriva-

tive matrices are evaluated at the estimated parameter values, but Ξ̃r is evaluated
using sample proportions. Obviously M ′

r
a= Mr

d→ χ2
s−q .

In a similar fashion, a unifying framework for limited and full information
estimation of IRT models for binary data can be obtained using quadratic forms in
joint raw moments of the MVB distribution. Consider the fit function (Maydeu-
Olivares & Joe, in press)

Fr = (p̃r − π̃r (θ))′ Ŵr (p̃r − π̃r (θ)) , (51)

where Ŵr is a matrix converging in probability to Wr , a positive-definite matrix that
does not depend on θ. Some obvious choices for Ŵr in Equation 51 are Ŵr = I,
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Ŵr = (Diag( ˆ̃Ξr ))−1, and Ŵr = ˆ̃Ξ
−1

r , where ˆ̃Ξr denotes Ξ̃r consistently estimated
using sample proportions. If ∆̃r is of full rank q and some other mild regularity
conditions are satisfied, θ̂ obtained by minimizing Equation 51 is consistent and

√
N (θ̂ − θ)

d→ N (0, HΞ̃r H′), H = (∆̃′
r Wr∆̃r )−1∆̃′

r Wr , (52)
√

N (p̃r − π̃r (θ̂))
d→ N (0, Ω̃r ), Ω̃r = (I − ∆̃r H)Ξ̃r (I − ∆̃r H)′. (53)

To obtain standard errors for the parameter estimates and residual proportions,
the derivative matrices may be evaluated at the estimated parameter values, and
Ξ̃r may be evaluated using sample proportions. Note that when Fn is employed, a
class of full-information estimators is obtained. Maydeu-Olivares and Joe (in press)
explicitly related the class of estimators Fn to the class of minimum chi-square
estimators in Equation 42.

When Ŵr = ˆ̃Ξ
−1

r is used in Equation 51, Equations 52 and 53 simplify to

√
N (θ̂ − θ)

d→ N

(
0,

(
∆̃′

r Ξ̃
−1
r ∆̃r

)−1
)

(54)

and
√

N (p̃r − π̃r (θ̂))
d→ N

(
0, Ξ̃r − ∆̃r

(
∆̃′

r Ξ̃
−1
r ∆̃r

)−1
∆̃′

r

)
. (55)

respectively, and we obtain estimators that are asymptotically efficient among the
class of estimator using information up to order r . Furthermore,

NF̂r = M ′
r

d→ χ2
s−q . (56)

The estimator proposed by Christoffersson (1975) to estimate the normal ogive
model is a member of the family of estimators (51). He estimated the model
minimizing F2 = (p̃2 − π̃2 (θ))′ ˆ̃Ξ

−1

2 (p̃2 − π̃2 (θ)) .

NUMERICAL EXAMPLES

We provide two numerical examples to illustrate our discussion using the Law
School Admissions Test (LSAT) 6 and LSAT 7 data sets (Bock & Lieberman, 1970).
Each of these data sets consists of 1,000 observations on five binary variables.

Comparing the Fit of a Factor Model and
of a Logistic Model to the LSAT 6 Data
Using Browne’s TB Statistic

In this section we compare the fit of a factor model versus a logistic IRT model
applied to the LSAT 6 data. We discussed previously that Browne’s TB statistic can
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be used to this purpose. We estimated a one-factor model to the LSAT 6 data using
unweighted least squares using the sample covariances under the α parametrization
in Equation 26. The two-parameter logistic IRT model was estimated using max-
imum likelihood from Equation 35. The parameter estimates, standard errors, and
TB statistics are shown in Table 3.1. We do not observe that the logistic IRT model
outperforms the factor model in fitting these data, as assessed by the TB statistic.

Notice that Table 3.1 does not report any of the IRT goodness-of-fit statistics for
the factor model. This is because under the factor model assumptions in Equations
18 and 19 these statistics cannot be computed. Additional assumptions on third-
and higher order moments of the latent trait are needed to compute the expected
probabilities under the factor model. These expected probabilities are needed to
compute the IRT fit statistics.

Factor Modeling Versus Linear IRT
Modeling of the LSAT 6 Data

In the factor model only univariate and bivariate moments are specified. Therefore,
this model can only be estimated using univariate and bivariate information. Unlike
the factor model, in the linear IRT model all the moments of the latent traits are
specified. As a result, the linear IRT model can be estimated using either full
information or limited information. Here, we compare the fit of a unidimensional
linear IRT model versus the fit of a one-factor model applied to the LSAT 6 data.
We assume that the moments of the latent trait in the linear IRT model are fixed
constants. The constants chosen are those of a standard normal density. Therefore,
the five moments of the latent trait are fixed to

κ′ = (0, 1, 0, 3, 0) . (57)

Table 3.1 reports the linear IRT parameters estimated using a variety of full- and
limited-information estimators.

Because the factor model and the linear IRT model are equivalent when the
latter is estimated using only bivariate information, it is most interesting to com-
pare the last two columns of Table 3.1, where both models are estimated using
bivariate information. The results are not identical even though we used the same
estimation procedure (ULS). This is because the linear IRT model is estimated
from raw moments (marginal proportions), whereas the factor model is estimated
using central moments (covariances) and there is not a one-to-one correspondence
between both fit functions.

Effects of the Estimation Method and
Choice of IRT Model on the LSAT 6 Data

In Table 3.1 we present the results of fitting a two-parameter logistic IRT
model to the LSAT 6 data using (a) full-information maximum likelihood and
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TABLE 3.1
Parameter Estimates and Goodness-of-Fit Tests for the Law School Admission Test 6 Data

Logistic Linear Factor
IRT Model IRT Model Model

ML ULS ML ULS ULS ULS
(Full) (Bivariate) (Full) (Full) (Bivariate) (Bivariate)

Parameter estimates
α1 2.77 2.84 0.92 0.92 0.92 0.92

(0.21) (0.24) (0.01) (0.01) (0.01) (0.01)
α2 0.99 0.98 0.71 0.71 0.71 0.71

(0.09) (0.09) (0.01) (0.02) (0.01) (0.01)
α3 0.25 0.26 0.55 0.56 0.55 0.55

(0.08) (0.08) (0.02) (0.02) (0.02) (0.03)
α4 1.28 1.27 0.76 0.77 0.76 0.76

(0.10) (0.10) (0.01) (0.01) (0.01) (0.01)
α5 2.05 2.03 0.87 0.87 0.87 0.87

(0.13) (0.12) (0.01) (0.01) (0.01) (0.01)
β1 0.83 0.97 0.05 0.05 0.07 0.06

(0.26) (0.31) (0.02) (0.02) (0.02) (0.02)
β2 0.72 0.63 0.14 0.14 0.12 0.13

(0.18) (0.20) (0.03) (0.04) (0.03) (0.04)
β3 0.89 1.04 0.18 0.17 0.21 0.19

(0.23) (0.36) (0.04) (0.05) (0.05) (0.03)
β4 0.69 0.62 0.12 0.10 0.11 0.12

(0.18) (0.20) (0.03) (0.03) (0.03) (0.03)
β5 0.66 0.55 0.07 0.06 0.06 0.07

(0.20) (0.22) (0.02) (0.02) (0.02) (0.02)

Goodness-of-fit tests
X2 18.15 19.62 19.51 20.69 22.47 —

(0.64) — (0.55) — —
G2 21.47 22.49 22.96 23.96 25.66 —

(0.43) — (0.35) — —
Mn 18.15 18.79 19.51 19.68 19.69 —

(0.64) (0.60) (0.55) (0.54) (0.54)
M2 4.75 5.07 4.37 4.49 4.70 —

(0.45) (0.41) (0.50) (0.48) (0.45)
TB 5.06 5.37 4.89 4.83 5.20 4.90

(0.41) (0.37) (0.43) (0.42) (0.39) (0.43)

Note. IRT, Item response theory. Estimators are maximum likelihood (ML) or unweighted least
squares (ULS). Information is full or bivariate as indicated. The factor model and the linear item
response model estimated from bivariate information are equivalent models. Standard errors are given
in parentheses for parameter estimates; p values are given in parentheses for goodness-of-fit tests.
When the model is not estimated by full-information maximum likelihood, p values for X2 and G2

are not provided because these statistics are not asymptotically chi-squared distributed. There are 21
degrees of freedom for X2, G2, and Mn ; there are 5 degrees of freedom for M2 and TB .

90
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(b) bivariate-information ULS estimation. We also present the results of fitting a
linear IRT model to these data using (a) full-information maximum likelihood, (b)
full-information ULS estimation, and (c) bivariate-information ULS estimation.
Therefore, we can examine the effects of the choice of model and of the choice
of estimation method. We can use three statistics to compare the fit of these two
models regardless of how they have been estimated: the full-information statistic
Mn and the limited-information statistics M2 and TB .

Informally speaking, the Mn statistic can be used to assess the fit of these
models to the cell proportions. The M2 statistic can be used to assess their fit to
the univariate and bivariate raw moments of the data. Finally, the TB statistic can
be used to assess their fit to the sample covariances. When the model is estimated
using full-information maximum likelihood, Mn = X2. Also, when the model
is not estimated using an asymptotically efficient estimator, X2 and G2 are not
asymptotically chi-square distributed and consequently p values are not reported
in Table 3.1 in those instances.

Inspecting the relevant goodness-of-fit statistics presented in this table, we see
that for these data the difference between estimating a model using full-information
maximum likelihood versus bivariate-information ULS is very small. Also, the fit
differences between the linear and the logistic models, for these data are also rather
small. In general, one should expect the logistic model to yield a better fit to binary
data than the linear model (see the next example), but for these data the logistic
item response functions are so flat that the linear item response model provides a
comparable fit. This is illustrated in Fig. 3.1, where we provide the item response
functions under both models for a chosen item.
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FIG. 3.1. Item response function of the Law School Admission
Test 6 fourth item under the linear and logistic models. The param-
eter estimates were estimated using full-information maximum
likelihood. The parameter estimates are depicted in Table 3.1.
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Linear Versus Logistic IRT Modeling
of the LSAT 7 Data

We now examine the fit of unidimensional linear and logistic IRT models to the
LSAT 7 data. Here we only used full-information maximum likelihood estimation.
Initially, we fixed the moments of the latent trait in the linear IRT model at the
values of the moments of a standard normal density (see Equation 57). The results
are shown in Table 3.2. As can be seen in this table, there is not much difference

TABLE 3.2
Parameter Estimates and Goodness-of-Fit Tests for the Law School Admission Test 7 Data

Logistic Model Linear Model A Linear Model B

Parameter estimates
α1 1.86 0.83 0.79

(0.13) (0.01) (0.02)
α2 0.81 0.66 0.60

(0.09) (0.01) (0.02)
α3 1.81 0.77 0.71

(0.20) (0.01) (0.02)
α4 0.49 0.60 0.56

(0.07) (0.02) (0.02)
α5 1.85 0.84 0.82

(0.11) (0.01) (0.02)
β1 0.99 0.12 0.14

(0.17) (0.02) (0.02)
β2 1.08 0.20 0.20

(0.17) (0.02) (0.02)
β3 1.71 0.20 0.23

(0.32) (0.02) (0.03)
β4 0.77 0.14 0.17

(0.13) (0.02) (0.02)
β5 0.74 0.08 0.10

(0.15) (0.02) (0.02)
κ1 0 0 0.28

(Fixed) (Fixed) (0.07)

Goodness-of-fit tests
X2 32.48 46.56 34.09

(0.05) (<0.01) (0.03)
G2 31.94 42.98 32.11

(0.06) (<0.01) (0.04)
M2 11.92 10.19 11.27

(0.04) (0.07) —

Note. Standard errors are given in parentheses for parameter estimates; p values are given in paren-
theses for goodness of fit tests. All models were estimated by full-information maximum likelihood.
The number of degrees of freedom for X2 and G2 is 21 for the logistic model and linear model A and
20 for linear model B. The number of degrees of freedom for M2 is 5 for the logistic model and linear
model A. The values used to fix the latent variable moments were those of a standard normal density.



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

LE104-03 LE104-Maydeu-v2.cls February 20, 2005 13:49

3. LINEAR IRT, NONLINEAR IRT, AND FACTOR ANALYSIS 93

TABLE 3.3
Goodness-of-Fit Tests for Some Unidimensional Linear Item Response Models

Applied to the Law School Admission Test 7 Data

Model G2 df

All moments fixed 42.98 21
Estimated κ1 32.11 20
Estimated κ2 41.86 20
Estimated {κ1, κ2} 31.76 19
Estimated {κ1, κ2, κ3} 31.50 18

Note. All models were estimated by full-information maximum likelihood.
The values used to fix the moments were those of a standard normal density.

in how well both models reproduce the bivariate margins of the table. However,
the full-information test statistics indicate that the linear model fails to reproduce
the observed cell frequencies. An examination of the standardized cell residuals
N (pc − πc)2/πc, where πc denotes a cell probability as in Equation 1, reveals
that the linear model particularly fails to reproduce the patterns (0,1,0,0,0) and
(0,0,0,0,0). Their corresponding standardized cell residuals are 13.81 and 7.81,
respectively. Thus, these patterns account for 28% and 17%, respectively, of the
value of the X2 statistic.

However, we can improve the fit of the linear IRT model by estimating some
of the moments of the latent trait. With five items, up to three moments can be
identified. In Table 3.3 we provide the values of the G2 statistics obtained when
some of the moments of the latent trait were estimated. As can be seen in this table,
the best unidimensional linear model for these data is obtained by estimating the
mean of the latent trait. In Table 3.2 we provide the full set of parameter estimates
and standard errors for this model. This model provides a fit to the LSAT 7 data
comparable to that of the logistic model, at the expense of an additional parameter.
Note that we do not provide a p value for M2 because this model is not identified
from bivariate information.

It should be noted that estimating a high-order moment of a random variable
requires large samples, more so, probably, in the case of latent variables. Thus,
estimating high-order moments of a latent trait should only be attempted in large
samples. If the sample size is not large enough, the linear model may become
empirically underidentified (i.e., ∆̂ will not be of full rank).

EAP Scores for the Linear Model

Once the parameters of a linear model have been estimated, we can obtain scores
for individual responses. Here we compare the results obtained when computing
expected a posteriori scores for the estimated-mean linear model and for the logistic
model for the LSAT 7 dataset. The parameter estimates for these models were
presented in Table 3.2. For the logistic model, EAP scores were computed Equation
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12 assuming a prior standard normal density because this is the density we used
in estimating the parameters of this model.

For the linear model, although it is not necessary to assume a density for the
latent traits to estimate the model parameters, it is necessary to use some prior
distribution to obtain the posterior distribution of the latent traits. In the unidimen-
sional case, we have found that the normal prior distribution

γ1 (η) = φ1
(
η : −κ1, κ2 − κ2

1

)
(58)

yields good results. When the EAP scores for the mean-estimated linear model
are obtained using this prior distribution, they correlate 0.98 with the logistic EAP
scores and 0.95 with the number right scores (i.e., the unweighted sum of the
binary scores). Figures 3.2 and 3.3 are plots of the linear EAP scores against the
logistic EAP and number-right scores.

Similar results were obtained when we computed EAP scores for the LSAT 6
data using the linear and logistic models estimated by full-information maximum
likelihood. The linear EAP scores correlated 0.96 with the logistic EAP scores,
and 0.96 with the number-right scores.
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FIG. 3.2. Plot of the expected a posterior (EAP) latent trait esti-
mates under the logistic model and a linear model estimating the
mean of the latent trait for the Law School Admission Test 7 data.
The parameter estimates were estimated using full-information
maximum likelihood. The parameter estimates are depicted in
Table 3.2.
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FIG. 3.3. Plot of the expected a posterior (EAP) latent trait esti-
mates under a linear model estimating the mean of the latent trait
versus number-right score for the Law School Admission Test 7
data.

DISCUSSION AND CONCLUSIONS

In this chapter we integrated factor analysis and IRT within a unified modeling
and estimation framework. McDonald (1982a) offered a unified treatment of linear
and nonlinear IRT modeling using Hermite polynomials. He also offered an alter-
native unified treatment of linear and nonlinear IRT modeling using link functions
(McDonald, 1999). When the latter approach is employed, it is not clear what the
difference is, if any, between a factor model applied to binary data and a linear
item response model for binary data. We discussed that these two models differ in
that the linear item response model is a fully specified model, whereas under the
factor model only the first two moments of the data are specified. As a result, under
the linear item response model, most moments of the latent traits can be identified
when full-information estimation is used.

One attractive feature of the linear item response model is that it does not require
any assumptions on the distribution of the latent traits. Only assumptions on the mo-
ments of the latent traits are needed to identify the model. Furthermore, we showed
that high-order moments of the latent traits can be estimated under the linear IRT
model. We illustrated this fact by estimating the first three moments of the latent
trait along with the item parameters of a unidimensional model fitted to the LSAT 7
data. Note, however, that large samples are needed to estimate high-order moments
of any random variable, more so, probably in the case of latent random variables.
Also note that although we have not assumed any prior distribution of the latent
traits to estimate the item parameters, we needed to assume a prior distribution of



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

LE104-03 LE104-Maydeu-v2.cls February 20, 2005 13:49

96 MAYDEU-OLIVARES

the latent traits to obtain the posterior distribution of the latent traits, which is the
approach taken here to compute individual scores under the linear IRT model.

An unattractive feature of the linear model is that the item response functions
are not bounded between zero and one. Thus, in principle, for low enough values
of the latent traits the probability of endorsing the item may be negative, whereas
for high enough values of the latent traits the probability of endorsing the item
may be greater than one. However, we verified that at the EAP scores computed
for the LSAT 6 and LSAT 7 data the item response functions do not fall outside of
the [0, 1] range. Also, for these two data sets the linear item response model is a
proper model because the cell probabilities are in the range [0, 1].

Although in general we expect nonlinear IRT models to yield a better fit to
binary data than the linear model, we also showed using two data sets that in some
applications the linear model may provide a good fit to binary data sets. For the
LSAT 6 data, a linear model with fixed moments provides a fit comparable to that
of the two-parameter logistic model. For the LSAT 7 data, a linear model with fixed
moments provides a poor fit to the observed binary pattern frequencies, but a linear
model estimating the mean of the latent traits provides a fit comparable to that
of a two-parameter logistic model (at the expense of an additional parameter, of
course).

In closing, we note that McDonald (1999) pointed out that when the linear
IRT model is estimated using only univariate and bivariate information, this
model is equivalent to the factor model applied to binary data. However, the
factor model is generally estimated using central joint moments (covariances) or
standardized joint central moments (correlations), whereas in limited-information
IRT estimation raw joint moments (cross-products) are generally used. In any
case, the general framework of moment estimators provides a unifying estimation
framework for factor analysis (and more generally structural equation modeling)
and IRT. We pointed out that Browne’s TB statistic provides a common yardstick
for assessing the goodness of fit of a factor model and an IRT model to binary data.
This statistic is a quadratic form in the residual covariances with a sample-based
weight matrix. Maydeu-Olivares and Joe (in press) recently introduced a similar
statistic, M2. This is also a quadratic form, but in the residual cross-products, where
a model-based weight matrix is used instead. The two statistics are asymptotically
chi-square distributed for any consistent and asymptotically normal estimator, and
so is the full information extension of M2, Mn . Because Mn is also asymptotically
chi-square distributed for any consistent and asymptotically normal estimator it
can be used, unlike X2 or G2, to assess the goodness of fit of competing IRT models
regardless of whether they have been estimated using limited- or full-information
methods.
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APPENDIX. REPRESENTATIONS OF THE
MULTIVARIATE BERNOULLI

DISTRIBUTION

The ( n
1 ) univariate moments of the multivariate Bernoulli distribution are of the

form

E[yi ] = 1 × Pr(yi = 1) + 0 × Pr(yi = 0) = Pr(yi = 1) = π̇i . (A1)

Similarly, each of the ( n
2 ) bivariate raw moments of y is of the form

E[yi y j ] = Pr[(yi = 1) ∩ (y j = 1)] = π̇i j , i < j. (A2)

and so forth. The overall number of raw joint moments of y is
∑n

i=1 ( n
i ) = 2n − 1.

The relationship between the (2n − 1) vector of moments π̇ and the 2n vector of
cell probabilities π is linear, say π̇ = Tπ, where T is a matrix that consists of ones
and zeros (Maydeu-Olivares, 1997).

We illustrate π̇ = Tπ for the case of n = 3 Bernoulli variables:




π̇1

π̇2

π̇3

π̇12

π̇13

π̇23

π̇123




=




0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1







π000

π100

π010

π001

π110

π101

π011

π111




, (A3)

where, for instance, π100 = Pr [(y1 = 1) ∩ (y2 = 0) ∩ (y3 = 0)].
The relationship between π and π̇ is one-to-one. To see this, notice in Equation

A3 that π̇ = Tπ can always be written as

π̇ = ( 0



T )

(
π0


π

)
= 


T

π, (A4)

whereπ0 = Pr[
⋂n

i=1 (yi = 0)],


π is used to denote the (2n − 1)-dimensional vector

of cell probabilities excluding π0, and
�

T is an upper triangular square matrix. Then,
because π0 = 1 − 1′ 
π, the inverse relationship between π̇ and π is

π =
(

1
0

)
+


 −1′
T

−1




T
−1


 π̇. (A5)

As a result, we can represent any item response model for binary data using its
vector of moments π̇ rather than its vector of cell probabilities π.
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We now present some results for the moments of the multivariate Bernoulli
distribution that are valid under any item response model. We make use of these
results in the body of the text.

First, we notice that the expected value of a variable given the latent traits simply
equals the item response function. This is because

E [yi |η] = 1 × Pr (yi = 1|η) + 0 × Pr (yi = 0|η) = Pr (yi = 1|η) . (A6)

Next, we notice that the univariate moments are simply the expected value of the
item response function,

π̇i = Eη [Pr (yi = 1|η)] , (A7)

where Eη [•] is used to indicate that the expectation is to be taken with respect to
η. This result follows immediately from Equation A6 and the double expectation
theorem (e.g., Mittelhammer, 1996), E [yi ] = Eη [E [yi |η]].

Similarly, we notice that the bivariate raw moments are simply

π̇i j = Eη[Pr(yi = 1|η) Pr(y j = 1|η)]. (A8)

This is because we can write π̇i j = E[yi ∩ y j ] = Eη[E[(yi ∩ y j )|η]]. From the as-
sumption of local independence, however, E[(yi ∩ y j )|η] = E[yi |η]E[y j |η]. Fi-
nally, the trivariate moments are simply

π̇i jk = Eη[Pr(yi = 1|η) Pr(y j = 1|η) Pr(yk = 1|η)]. (A9)

Similar expressions result for higher moments.
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